Ingénieur diplômé de l’École nationale supérieure d'arts et métiers, spécialité mécanique et mécatronique
Certification RNCP37484
Formacodes 23554 | Mécanique théorique 24424 | Mécatronique 24454 | Automatisme informatique industrielle 31654 | Génie industriel
Nomenclature Europe Niveau 7
Formacodes 23554 | Mécanique théorique 24424 | Mécatronique 24454 | Automatisme informatique industrielle 31654 | Génie industriel
Nomenclature Europe Niveau 7
Les métiers associés à la certification RNCP37484 : Management et ingénierie de maintenance industrielle Management et ingénierie études, recherche et développement industriel Management et ingénierie d'affaires Management et ingénierie de production Management et ingénierie méthodes et industrialisation
Codes NSF 200 | Technologies industrielles fondamentales 201 | Technologies de commandes des transformations industrielles 250 | Spécialites pluritechnologiques mécanique-electricite
Voies d'accès : Contrat d'apprentissage Formation continue Contrat de professionnalisation VAE
Prérequis : Etre titulaire d'une certification de niveau 5 ou 6 dans les domaines scientifique, technologique ou équivalent (type DUT, BUT, BTS, prépa ATS, licence, CPGE scientifique ou technologique)
Certificateurs :
Voies d'accès : Contrat d'apprentissage Formation continue Contrat de professionnalisation VAE
Prérequis : Etre titulaire d'une certification de niveau 5 ou 6 dans les domaines scientifique, technologique ou équivalent (type DUT, BUT, BTS, prépa ATS, licence, CPGE scientifique ou technologique)
Certificateurs :
Certificateur | SIRET |
---|---|
ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS (ENSAM) | 19753472000010 |
Activités visées :
Au sein de TPE/PME ou de grand groupe, l’ingénieur mécanique et mécatronique est amené notamment à : - Concevoir, développer et intégrer de nouveaux produits et équipements industriels sur la base de normes, cahiers des charges et retours d'expériences dans le respect des objectifs qualité, coûts et délais, - Réaliser l’interface entre les différents experts métiers - Communiquer un suivi régulier du statut et des jalons aux différents acteurs du projet - Contribuer à l’amélioration de produits existants - Réaliser les analyses et calculs nécessaires au dimensionnement, - Définir et contrôler les choix d'architectures mécaniques/mécatroniques - Concevoir et réaliser les tests nécessaires à la validation des systèmes, analyse les résultats - Rédiger les spécifications techniques - Gérer la sous-traitance en interne ou externe - Piloter le lancements des prototypes, des premiers de série, jusqu’à l’industrialisation des produits - Intégrer le cycle de vie des produits dans ses choix technologiques
Au sein de TPE/PME ou de grand groupe, l’ingénieur mécanique et mécatronique est amené notamment à : - Concevoir, développer et intégrer de nouveaux produits et équipements industriels sur la base de normes, cahiers des charges et retours d'expériences dans le respect des objectifs qualité, coûts et délais, - Réaliser l’interface entre les différents experts métiers - Communiquer un suivi régulier du statut et des jalons aux différents acteurs du projet - Contribuer à l’amélioration de produits existants - Réaliser les analyses et calculs nécessaires au dimensionnement, - Définir et contrôler les choix d'architectures mécaniques/mécatroniques - Concevoir et réaliser les tests nécessaires à la validation des systèmes, analyse les résultats - Rédiger les spécifications techniques - Gérer la sous-traitance en interne ou externe - Piloter le lancements des prototypes, des premiers de série, jusqu’à l’industrialisation des produits - Intégrer le cycle de vie des produits dans ses choix technologiques
Capacités attestées :
Concevoir, organiser et optimiser l'ensemble des solutions techniques (faisabilité, capacité, fiabilité, rentabilité) et des méthodes de production/fabrication, selon les impératifs de productivité, de qualité et environnementaux, en prenant en compte dès la phase de conception les aspects liés au cycle de vie du produit Qualifier le processus d’un produit ou d’un système de production en cours et en fin de fabrication en respectant les contraintes technico-économiques, qualité, hygiène, sécurité et environnementales liées à l’activité Modéliser et dimensionner, à partir des besoins clients, des systèmes mécaniques et mécatroniques traitant des phénomènes multiphysiques variés, à l’aide d’outils numériques (logiciels CAO) Concevoir, intégrer et optimiser des produits et systèmes technologiques complexes multi techniques et pluri-technologiques, intégrant de la mécanique, de l’électronique, de l'électrotechnique, de l'automatique et de l’informatique, selon les impératifs de productivité, de qualité, de sécurité… tout en prenant en compte les impacts environnementaux Mettre en œuvre des méthodes de tests d’intégration, et de validation de produits ou systèmes. Définir et suivre des indicateurs de performance (technique, délais, environnent, économique, innovation…). Anticiper et traiter les aléas avec agilité, en déclenchant et suivant les actions correctives en cas de non-performance, et appliquer une démarche de progrès constant par l’amélioration continue des produits, systèmes, projets ou processus Piloter la production de produits ou de systèmes en mettant en œuvre tous les moyens matériels et humains pour garantir le respect des objectifs de l’entreprise, en s’intégrant dans une organisation, en l’animant et en la faisant évoluer en mobilisant des ressources en management des hommes et des projets Piloter des projets complexes dans un contexte international en maitrisant une ou plusieurs langues étrangères et en s'adaptant aux différences socio-culturelles
Concevoir, organiser et optimiser l'ensemble des solutions techniques (faisabilité, capacité, fiabilité, rentabilité) et des méthodes de production/fabrication, selon les impératifs de productivité, de qualité et environnementaux, en prenant en compte dès la phase de conception les aspects liés au cycle de vie du produit Qualifier le processus d’un produit ou d’un système de production en cours et en fin de fabrication en respectant les contraintes technico-économiques, qualité, hygiène, sécurité et environnementales liées à l’activité Modéliser et dimensionner, à partir des besoins clients, des systèmes mécaniques et mécatroniques traitant des phénomènes multiphysiques variés, à l’aide d’outils numériques (logiciels CAO) Concevoir, intégrer et optimiser des produits et systèmes technologiques complexes multi techniques et pluri-technologiques, intégrant de la mécanique, de l’électronique, de l'électrotechnique, de l'automatique et de l’informatique, selon les impératifs de productivité, de qualité, de sécurité… tout en prenant en compte les impacts environnementaux Mettre en œuvre des méthodes de tests d’intégration, et de validation de produits ou systèmes. Définir et suivre des indicateurs de performance (technique, délais, environnent, économique, innovation…). Anticiper et traiter les aléas avec agilité, en déclenchant et suivant les actions correctives en cas de non-performance, et appliquer une démarche de progrès constant par l’amélioration continue des produits, systèmes, projets ou processus Piloter la production de produits ou de systèmes en mettant en œuvre tous les moyens matériels et humains pour garantir le respect des objectifs de l’entreprise, en s’intégrant dans une organisation, en l’animant et en la faisant évoluer en mobilisant des ressources en management des hommes et des projets Piloter des projets complexes dans un contexte international en maitrisant une ou plusieurs langues étrangères et en s'adaptant aux différences socio-culturelles
Secteurs d'activité :
Cette spécialité s’adresse à un large éventail de secteurs. En effet, les systèmes mécatroniques apportent les solutions innovantes nécessaires à la réalisation de projets stratégiques, dans des domaines tels que : transports, aéronautique, médical, défense, énergie, automobile, travaux publics, instrumentation, sécurité, etc.
Cette spécialité s’adresse à un large éventail de secteurs. En effet, les systèmes mécatroniques apportent les solutions innovantes nécessaires à la réalisation de projets stratégiques, dans des domaines tels que : transports, aéronautique, médical, défense, énergie, automobile, travaux publics, instrumentation, sécurité, etc.
Types d'emplois accessibles :
Les ingénieurs spécialisés en mécanique et mécatronique intègrent des fonctions comme : - Ingénieur d’études en conception de systèmes mécatroniques - Ingénieur d’études en maintenance des équipements de production - Chef de projet / Chef de projet Développement - Ingénieur en production automatisée, process industriels - Architecte système - Responsable produit
Les ingénieurs spécialisés en mécanique et mécatronique intègrent des fonctions comme : - Ingénieur d’études en conception de systèmes mécatroniques - Ingénieur d’études en maintenance des équipements de production - Chef de projet / Chef de projet Développement - Ingénieur en production automatisée, process industriels - Architecte système - Responsable produit
Objectif contexte :
L'objectif de la certification est de permettre à sa ou son titulaire d’exercer le métier d’ingénieur dans tous les secteurs d’activités en relation avec les systèmes mécaniques et mécatroniques qui requièrent des compétences combinées en mécanique, actio
L'objectif de la certification est de permettre à sa ou son titulaire d’exercer le métier d’ingénieur dans tous les secteurs d’activités en relation avec les systèmes mécaniques et mécatroniques qui requièrent des compétences combinées en mécanique, actio
Bloc de compétences
RNCP37484BC03 : Manager un projet et une équipe de conception d’un système mécanique et mécatronique
Compétences :
Identifier les objectifs QCD du projet (Qualité, Coûts, Délais), en les liant aux enjeux stratégiques de l’entreprise, au contexte technico-économique de ses clients et ses fournisseurs, de manière à structurer le projet, et définir les indicateurs de performance associés Gérer l’atteinte des objectifs définis précédemment, en choisissant la méthode de pilotage projet, en définissant les rôles de chaque ressource, en assurant le suivi du projet, par la mise en place d’un tableau d’indicateurs, le tout de manière à répondre aux exigences du client Gérer la clôture du projet, en identifiant et s’assurant de la réalisation des livrables (dossiers de définition, schémas et dossiers de réalisation, dossiers d’industrialisation…) afin de permettre leur transmission à l’équipe en charge de l’industrialisation et de la maintenance Réaliser un retour d’expérience du projet, en capitalisant les bonnes pratiques internes et externes, afin de garantir la bonne adéquation des méthodes de développement de projet à la nécessaire agilité de l’entreprise Constituer l'équipe projet, en mettant en adéquation les besoins en ressources avec les compétences disponibles en interne et en externe, pour garantir la couverture d’expertise nécessaire à la réussite du projet Etablir, pour soi-même et ses collaborateurs, un bilan des savoirs, savoir-faire et savoir-être, notamment dans une perspective de formation tout au long de la vie, en anticipant et mettant à jour ses compétences et en adoptant une attitude de veille de manière à conserver les facultés d’innovation et d’adaptation aux changements de technologies Gérer l’équipe projet pluridisciplinaire d’un système mécanique ou mécatronique, dans un contexte de forte intégration technologique, en mettant en œuvre les connaissances en mécanique, électricité, automatique, électronique et mécatronique, en dialoguant de pair-à-pair avec les experts du domaine, pour appréhender les contraintes de chaque discipline, de manière à optimiser l’utilisation des ressources dans l’atteinte des objectifs Partager et diffuser les informations via les canaux de communications adaptés, en adaptant son management à un environnement incluant de la diversité (tant culturelle, sociale, qu'aux personnes en situation de handicap), pour assurer l'engagement des moyens et des ressources Manager les intervenants externes (partenaires et sous-traitants, en France et à l'international), pour assurer le lien entre les différentes parties prenantes du projet Gérer la relation client/fournisseur, en participant aux phases de négociation et de contractualisation, dans un contexte juridique identifié, pour piloter les relations en phase avec les objectifs du projet Communiquer en langues française ou anglaise avec les parties prenantes du projet, en produisant des documentations adaptées, en participant à des réunions de travail pour garantir la tenue des jalons et maitriser les enjeux technico-économiques d’un projet international.
- La capacité à travailler dans un environnement multiculturel et géographiquement réparti est importante pour pouvoir évaluer la meilleure solution en termes de stratégie de fabrication, de support et de service après-vente du produit
Identifier les objectifs QCD du projet (Qualité, Coûts, Délais), en les liant aux enjeux stratégiques de l’entreprise, au contexte technico-économique de ses clients et ses fournisseurs, de manière à structurer le projet, et définir les indicateurs de performance associés Gérer l’atteinte des objectifs définis précédemment, en choisissant la méthode de pilotage projet, en définissant les rôles de chaque ressource, en assurant le suivi du projet, par la mise en place d’un tableau d’indicateurs, le tout de manière à répondre aux exigences du client Gérer la clôture du projet, en identifiant et s’assurant de la réalisation des livrables (dossiers de définition, schémas et dossiers de réalisation, dossiers d’industrialisation…) afin de permettre leur transmission à l’équipe en charge de l’industrialisation et de la maintenance Réaliser un retour d’expérience du projet, en capitalisant les bonnes pratiques internes et externes, afin de garantir la bonne adéquation des méthodes de développement de projet à la nécessaire agilité de l’entreprise Constituer l'équipe projet, en mettant en adéquation les besoins en ressources avec les compétences disponibles en interne et en externe, pour garantir la couverture d’expertise nécessaire à la réussite du projet Etablir, pour soi-même et ses collaborateurs, un bilan des savoirs, savoir-faire et savoir-être, notamment dans une perspective de formation tout au long de la vie, en anticipant et mettant à jour ses compétences et en adoptant une attitude de veille de manière à conserver les facultés d’innovation et d’adaptation aux changements de technologies Gérer l’équipe projet pluridisciplinaire d’un système mécanique ou mécatronique, dans un contexte de forte intégration technologique, en mettant en œuvre les connaissances en mécanique, électricité, automatique, électronique et mécatronique, en dialoguant de pair-à-pair avec les experts du domaine, pour appréhender les contraintes de chaque discipline, de manière à optimiser l’utilisation des ressources dans l’atteinte des objectifs Partager et diffuser les informations via les canaux de communications adaptés, en adaptant son management à un environnement incluant de la diversité (tant culturelle, sociale, qu'aux personnes en situation de handicap), pour assurer l'engagement des moyens et des ressources Manager les intervenants externes (partenaires et sous-traitants, en France et à l'international), pour assurer le lien entre les différentes parties prenantes du projet Gérer la relation client/fournisseur, en participant aux phases de négociation et de contractualisation, dans un contexte juridique identifié, pour piloter les relations en phase avec les objectifs du projet Communiquer en langues française ou anglaise avec les parties prenantes du projet, en produisant des documentations adaptées, en participant à des réunions de travail pour garantir la tenue des jalons et maitriser les enjeux technico-économiques d’un projet international.
- La capacité à travailler dans un environnement multiculturel et géographiquement réparti est importante pour pouvoir évaluer la meilleure solution en termes de stratégie de fabrication, de support et de service après-vente du produit
Modalités d'évaluation :
Les connaissances acquises ou des réalisations dans le cadre des activités en école sont évaluées par des épreuves obligatoires, écrites (devoirs surveillés), orales (présentations) ou pratiques (comptes rendus de travaux pratiques). Des jeux sérieux sont organisés pour mettre les apprenants en situation de travail en équipe et en mode projet. Les activités en entreprise sont évaluées à travers une grille de montée en compétences, remplie conjointement par le tuteur académique et le tuteur entreprise, et permettant de vérifier une progression tout au long des trois ans d’alternance. Ces mêmes activités font également l’objet de présentations orales à l’Ecole (séances de suivi de projet) ainsi que de rapports écrits.
Les connaissances acquises ou des réalisations dans le cadre des activités en école sont évaluées par des épreuves obligatoires, écrites (devoirs surveillés), orales (présentations) ou pratiques (comptes rendus de travaux pratiques). Des jeux sérieux sont organisés pour mettre les apprenants en situation de travail en équipe et en mode projet. Les activités en entreprise sont évaluées à travers une grille de montée en compétences, remplie conjointement par le tuteur académique et le tuteur entreprise, et permettant de vérifier une progression tout au long des trois ans d’alternance. Ces mêmes activités font également l’objet de présentations orales à l’Ecole (séances de suivi de projet) ainsi que de rapports écrits.
RNCP37484BC02 : Concevoir, dimensionner, réaliser et qualifier un produit ou équipement mécatronique
Compétences :
Modéliser le système à concevoir en utilisant les outils scientifiques de l’ingénieur et les logiciels de simulation et de modélisation de type CAO (Conception Assistée par Ordinateur) et en collectant les avis des experts du domaine, pour limiter les erreurs de conception et les retours en arrière Dimensionner les composants mécaniques standards ou spécifiques, les composants électriques, électroniques, d’actionnement, d’instrumentation, de conditionnement et de communication, en s’appuyant sur les études techniques, les notes de calculs et les résultats de simulation pour choisir les solutions technologiques répondant au cahier des charges Choisir les solutions technologiques répondant au mieux à un cahier des charges : composants (électroniques, électriques et mécaniques), capteurs et éléments de conditionnement et de traitement des signaux, en prenant en considération le triptyque coût / qualité / délais et les exigences règlementaires et environnementales Développer les systèmes mécaniques complexes en mettant en œuvre les méthodes de conception, réalisation et test, en définissant les phases et le nombre de prototypes avec les équipes de développement interne ou externe, pour obtenir une solution matérielle adaptée Intégrer des composants électriques ou électroniques, des systèmes d’asservissement, des réseaux de communication, en prenant en compte les contraintes d’intégration de type mécatroniques, environnementales ou réglementaires Evaluer la fiabilité, la maintenabilité, la disponibilité et la sécurité d'un système, d'un produit, d'un moyen ou d’un service, en utilisant des outils de type AMDEC ou équivalent, pour en assurer la sûreté de fonctionnement Déployer une stratégie d’intégration, de validation et de qualification, en réalisant une phase de tests et recettes, pour valider et certifier la solution technologique globale Mettre en œuvre un processus de suivi, en déployant des outils de gestion d’exigences pour contribuer à une démarche d’amélioration continue
Modéliser le système à concevoir en utilisant les outils scientifiques de l’ingénieur et les logiciels de simulation et de modélisation de type CAO (Conception Assistée par Ordinateur) et en collectant les avis des experts du domaine, pour limiter les erreurs de conception et les retours en arrière Dimensionner les composants mécaniques standards ou spécifiques, les composants électriques, électroniques, d’actionnement, d’instrumentation, de conditionnement et de communication, en s’appuyant sur les études techniques, les notes de calculs et les résultats de simulation pour choisir les solutions technologiques répondant au cahier des charges Choisir les solutions technologiques répondant au mieux à un cahier des charges : composants (électroniques, électriques et mécaniques), capteurs et éléments de conditionnement et de traitement des signaux, en prenant en considération le triptyque coût / qualité / délais et les exigences règlementaires et environnementales Développer les systèmes mécaniques complexes en mettant en œuvre les méthodes de conception, réalisation et test, en définissant les phases et le nombre de prototypes avec les équipes de développement interne ou externe, pour obtenir une solution matérielle adaptée Intégrer des composants électriques ou électroniques, des systèmes d’asservissement, des réseaux de communication, en prenant en compte les contraintes d’intégration de type mécatroniques, environnementales ou réglementaires Evaluer la fiabilité, la maintenabilité, la disponibilité et la sécurité d'un système, d'un produit, d'un moyen ou d’un service, en utilisant des outils de type AMDEC ou équivalent, pour en assurer la sûreté de fonctionnement Déployer une stratégie d’intégration, de validation et de qualification, en réalisant une phase de tests et recettes, pour valider et certifier la solution technologique globale Mettre en œuvre un processus de suivi, en déployant des outils de gestion d’exigences pour contribuer à une démarche d’amélioration continue
Modalités d'évaluation :
Les connaissances acquises ou des réalisations dans le cadre des activités en école sont évaluées par des épreuves obligatoires, écrites (devoirs surveillés), orales (application de la notion enseignée au contexte de l’entreprise) ou pratiques (comptes rendus de travaux pratiques). Le processus pédagogique peut recourir à des projets pluridisciplinaires pour illustrer le lien entre les différents modules. Les activités en entreprise sont évaluées à travers une grille de montée en compétences, remplie conjointement par le tuteur académique et le tuteur entreprise, et permettant de vérifier une progression tout au long des trois ans d’alternance.
Les connaissances acquises ou des réalisations dans le cadre des activités en école sont évaluées par des épreuves obligatoires, écrites (devoirs surveillés), orales (application de la notion enseignée au contexte de l’entreprise) ou pratiques (comptes rendus de travaux pratiques). Le processus pédagogique peut recourir à des projets pluridisciplinaires pour illustrer le lien entre les différents modules. Les activités en entreprise sont évaluées à travers une grille de montée en compétences, remplie conjointement par le tuteur académique et le tuteur entreprise, et permettant de vérifier une progression tout au long des trois ans d’alternance.
RNCP37484BC01 : Ecouter, analyser et formaliser le besoin client pour un projet de conception d’un système mécanique et mécatronique
Compétences :
Examiner le cycle de développement du système en identifiant les exigences du client, depuis la définition du besoin jusqu’aux étapes de réception, en les traçant à l’aide de méthodes de suivi d’exigences mises en place avec l'équipe projet, pour garantir la conformité du produit aux spécifications du client Analyser le cycle de développement du système en réalisant des études de sureté de fonctionnement, le tout de manière à garantir la conformité du produit aux normes applicables Prendre en compte les aspects liés au cycle de vie du produit en intégrant les contraintes d’industrialisation concertées avec les équipes production, de développement durable et de coût définies avec le service marketing, dès la phase de conception, pour présenter au client une solution pérenne et à coût objectif Identifier les solutions sur étagère et les produits ou composants ou services à développer, en traduisant le besoin client et en s’appuyant sur l’expertise interne/externe pour rédiger un cahier des charges fonctionnel, et dimensionner la structure du projet Déployer la structure du projet en modélisant les fonctions à développer, les phases d’intégration, de vérification et de validation, le planning et les ressources du projet pour sécuriser l’exécution du projet Etablir les critères d’intégration du système mécatronique avec son environnement, en définissant les interfaces externes et les contraintes techniques et environnementales avec le client, de manière à garantir la réponse au besoin fonctionnel Structurer les interfaces multi-physiques d'un système mécatronique, en identifiant les fonctions et en s'appuyant sur les experts métier pour les répartir entre les fonctions mécaniques, actionneurs, instrumentation, automatique, électronique et logiciels afin d’obtenir le bon rapport qualité/coût/performance tout en réduisant les impacts environnementaux et en intégrant les enjeux sociétaux
Examiner le cycle de développement du système en identifiant les exigences du client, depuis la définition du besoin jusqu’aux étapes de réception, en les traçant à l’aide de méthodes de suivi d’exigences mises en place avec l'équipe projet, pour garantir la conformité du produit aux spécifications du client Analyser le cycle de développement du système en réalisant des études de sureté de fonctionnement, le tout de manière à garantir la conformité du produit aux normes applicables Prendre en compte les aspects liés au cycle de vie du produit en intégrant les contraintes d’industrialisation concertées avec les équipes production, de développement durable et de coût définies avec le service marketing, dès la phase de conception, pour présenter au client une solution pérenne et à coût objectif Identifier les solutions sur étagère et les produits ou composants ou services à développer, en traduisant le besoin client et en s’appuyant sur l’expertise interne/externe pour rédiger un cahier des charges fonctionnel, et dimensionner la structure du projet Déployer la structure du projet en modélisant les fonctions à développer, les phases d’intégration, de vérification et de validation, le planning et les ressources du projet pour sécuriser l’exécution du projet Etablir les critères d’intégration du système mécatronique avec son environnement, en définissant les interfaces externes et les contraintes techniques et environnementales avec le client, de manière à garantir la réponse au besoin fonctionnel Structurer les interfaces multi-physiques d'un système mécatronique, en identifiant les fonctions et en s'appuyant sur les experts métier pour les répartir entre les fonctions mécaniques, actionneurs, instrumentation, automatique, électronique et logiciels afin d’obtenir le bon rapport qualité/coût/performance tout en réduisant les impacts environnementaux et en intégrant les enjeux sociétaux
Modalités d'évaluation :
Les connaissances acquises ou des réalisations dans le cadre des activités en école sont évaluées par des épreuves obligatoires, écrites (devoirs surveillés) ou orales (application de la notion enseignée au contexte de l’entreprise). Des études de cas spécifiques (rédaction d'une spécification, architecture matériel/logiciel, traçabilité des exigences, calcul de coûts) viennent compléter, de manière plus appliquée, ces modalités. Les activités en entreprise sont évaluées à travers une grille de montée en compétences, remplie conjointement par le tuteur académique et le tuteur entreprise, et permettant de vérifier une progression tout au long des trois ans d’alternance.
Les connaissances acquises ou des réalisations dans le cadre des activités en école sont évaluées par des épreuves obligatoires, écrites (devoirs surveillés) ou orales (application de la notion enseignée au contexte de l’entreprise). Des études de cas spécifiques (rédaction d'une spécification, architecture matériel/logiciel, traçabilité des exigences, calcul de coûts) viennent compléter, de manière plus appliquée, ces modalités. Les activités en entreprise sont évaluées à travers une grille de montée en compétences, remplie conjointement par le tuteur académique et le tuteur entreprise, et permettant de vérifier une progression tout au long des trois ans d’alternance.
Partenaires actifs :
Partenaire | SIRET | Habilitation |
---|---|---|
AMTALENTS | 90021084000014 | HABILITATION_FORMER |
INSTITUT SUPERIEUR DES TECHNIQUES DE LA PERFORMANCE | 38129402400033 | HABILITATION_ORGA_FORM |